# Повышение эффективности применения многоспутниковых систем на базе малых космических аппаратов

Гриценко А.А.

Генеральный директор, к.т.н.

Пятый Евразийский аэрокосмический конгресс 24 июля 2023 года Конгресс-Центр ЦМТ, Москва



## Основные области применения спутниковых систем с орбитальными группировками малых космических аппаратов

Телекоммуникационный сегмент

Высокоскоростной доступ (ВСД)

Персональная спутниковая связь

Интернет вещей (ІоТ)

Прямой доступ к абонентам 4/5G

Сегмент средств Д33

В оптическом диапазоне (ИК, видимый, УФ)

Радиочастотный диапазон



Решение специальных задач

Метеорология

Мониторинг радиочастотного спектра

Исследование физических полей (гравитационное поле, магнитное поле и др.)

\*\*\*\*

Главная задача — оптимизация пользовательского сегмента

#### Основные критерии:

- максимизация скорости (оперативности) передачи информации;
- компактность абонентского оборудования;
- минимизация стоимости абонентского оборудования;
- минимизация стоимости предоставления услуг.

Многоспутниковая орбитальная группировка - это одна из ключевых составляющих спутниковой системы. Ее баллистическое построение определяется функциональной задачей, которая в свою очередь зависит от конечной услуги, предоставляемой спутниковой системой потребителям на Земле.

**Целесообразно комплексное взаимоувязанное развитие спутниковых систем** различного целевого назначения (связь, навигация, ДЗЗ) с ориентацией на конечного пользователя, что может дать сверхсуммарный эффект.



## Классификация МКА, типы используемых орбит

#### Таблица 1 Классификация КА по массе

| Группа   |       | Полная масса, кг |
|----------|-------|------------------|
| тяжелые* |       | > 3000           |
| средние* |       | 1000 3000        |
| легкие*  |       | 500 1000         |
| малые    | мини  | 100 500          |
|          | микро | 10 100           |
|          | нано  | 1 10             |
|          | пико  | 0,1 1            |
|          | фемто | < 0.1            |

<sup>\* -</sup> в разных источниках могут обозначаться по разному

#### Таблица 2 Классификация ОГ по мощности

| Мощность ОГ   | Обозначение           | Число КА    |
|---------------|-----------------------|-------------|
| Единичная     | UP (Unit Power)       | 1           |
| Малая         | LP (Low Power)        | 250         |
| Средняя       | MP (Medium Power)     | 51100       |
| Большая       | HP (High Power)       | 1001 000    |
| Очень большая | VP (Very High Power)  | 1 00010 000 |
| Гипербольшая  | GP (Hyper High Power) | > 10 000    |

Таблица 3 Потенциальные орбиты МКА

| LEO       | низкие круговые орбиты<br>(e=0, h=3001500 км)                     |
|-----------|-------------------------------------------------------------------|
| cco (sso) | солнечно-синхронные орбиты<br>(e=0, i=9699 град, h=2006001500 км) |
| VLEO      | очень низкие круговые орбиты<br>(e=0, h=100300 км)                |

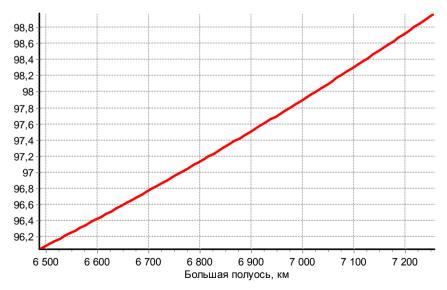



Рис.1 Наклонение ССО при ее высоте от 200 км до 1500 км



### VLEO – очень низкая околоземная орбита

**VLEO (Very low Earth orbit)** – круговая околоземная орбита высотой примерно от 100 км (линия Кармана) до 350 км.

#### Ключевые особенности:

- предельно малая дальность между спутником и поверхностью земли (абонентом);
- высокая угловая скорость движения спутника (период обращения на высоте 200 км составляет 16.3 об/сут):
- достаточно высокая плотность атмосферы.

#### Производные факторы:

- самая низкая себестоимость выведения МКА на орбиту;
- предельно высокое разрешение для системы ДЗЗ;
- минимальные энергетические потери на участках Космос-Земля и Земля-Космос;
- предельно малая задержка в прохождении сигнала;
- небольшие зоны обслуживания (наблюдения), что предполагает использование МКА;
- отсутствует космический мусор;
- захоронение МКА происходит автоматически, не требуется дополнительных ресурсов.

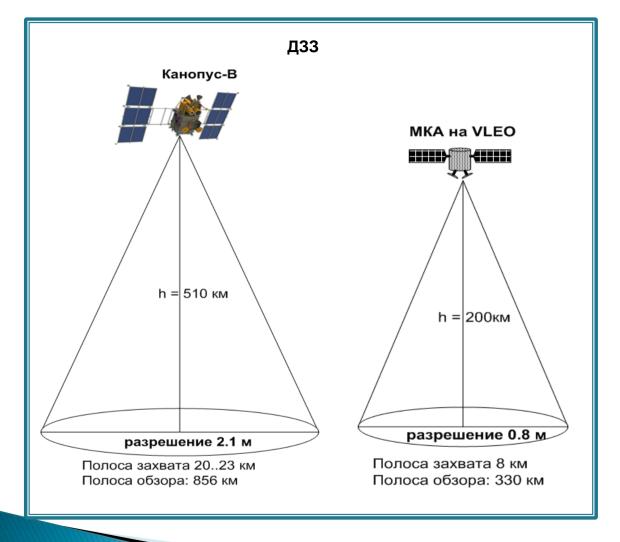
#### Актуальность использования VLEO:

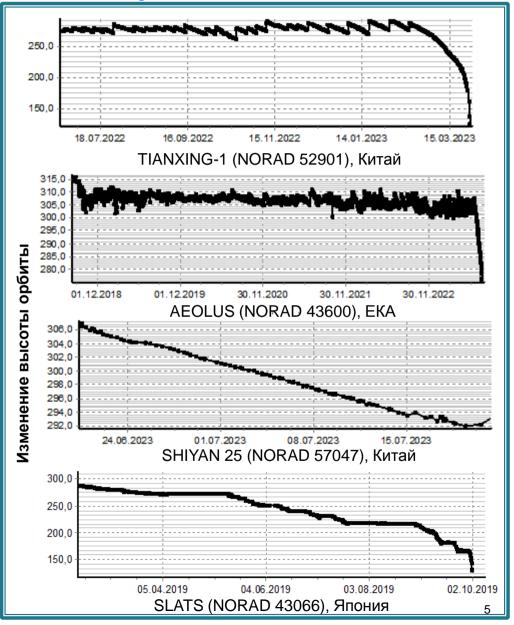
- в июне 2021 года состоялся «1-й Международный симпозиум по миссиям и технологиям VLEO»:
- в конце 2022 года в документах DARPA преимущества VLEO рассматриваются как перспективные для развертывания созвездия малых КА с поддержкой технологии 6G;
- значительное число публикаций на тему использования VLEO.

**Необходимое условие:** наличие двигателя малой тяги, обеспечивающего парирование негативного воздействия атмосферы.

В России идут разработки двигателей малой тяги (ионный двигатель открытого типа), обеспечивающих длительное пребывание спутника на орбитах высотах до 200 км.

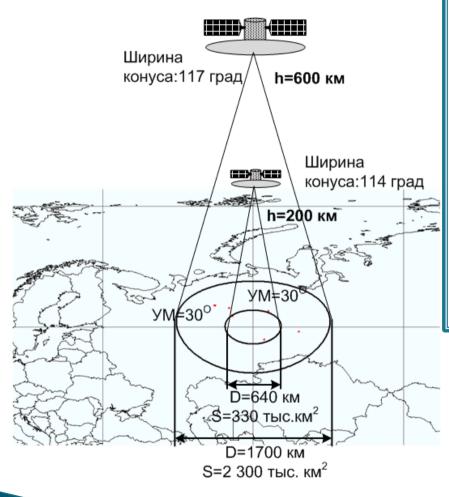
**Ключевой фактор:** проработка концепции, в которой остаточная атмосфера на высоте VLEO собирается и используется в качестве топлива для электрического двигателя, что теоретически устраняет необходимость наличия топлива на борту.


**DISCOVERER** – Европейской проект по созданию системы Д33 на орбитах VLEO. Включает:


- разработка материалов, обеспечивающих малое сопротивление и устойчивость в среде VLEO;
- разработка атмосферных электроракетных двигателей;
- разработка методов активного аэродинамического управления;
- компоновку малого КА для VLEO.

**Стартап Kreios Space** из Барселоны также планирует раскрыть потенциал спутниковых миссий на очень низкой околоземной орбите (VLEO).




### VLEO – очень низкая околоземная орбита







### Применение VLEO для телекоммуникационных систем



#### Абонентская линия, участок «вниз»

**Ограничение РР:** значение эквивалентной ППМ при УМ>25 град в полосе 1 МГц не должно превышать (Ka-band) -105 дБ(Вт/м2);

Это значит, что все НГСО системы потенциально могут обеспечить предельное значение ППМ. Следовательно, SNR на входе приемника у всех систем примерно одинаковј (помехи в данном случае не учитываются).

Однако мощность передатчика на VLEO высотой 200 км будет в 7 раз меньше, чем мощность передатчика на LEO высотой 600 км. То есть вместо СЭС мощностью 100 Вт достаточно СЭС мощностью 14 Вт.

#### Абонентская линия, участок «вверх»

#### Ограничений РР нет.

Потери в свободном пространстве, например в Ка-диапазоне (30 ГГц):

-для спутника на VLEO (200 км):168 дБ; -для спутника на LEO (600 км):178 дБ.

То есть. при прочих равных условиях выигрыш при использовании VLEO составит 10 дБ.

Это значит, что использование VLEO обеспечивает безальтернативно высокие скорости в обратном канале от абонентских станций, размещенных, например, на беспилотных системах.

#### Достоинства VLEO:

- на линии «вниз» могут использоваться в 7 раз более маломощные передатчики, чем на МКА на стандартных LEO высотах;
- энергетический выигрыш на линии «вверх», по сравнению с LEO, составляет около 10 дБ, что обеспечивает более высокую (по сравнению с LEO) скорость обратного направления, т.е. поддержка беспилотных систем:
- целесообразно проработка технологии динамического перераспределения пропускной способности между прямым и обратным направлением (в качестве примера LTE TDD);
- не требуется покрывать всю зону радиовидимости, необходимо реализовать «прыгающий луч»;
- проработка концепции МКА: «спутник луч».



### Минимизация стоимости выведения и разведения

Типовые (для России) этапы выведения и развертывания МКА на LEO:

**Этап 1** РН выводит группу МКА на опорную орбиту высотой примерно 200...250 км;

**Этап 2** РБ (Третья ступень) довыводит группу МКА на рабочую орбиту (например, высотой 600 км);

**Этап 3** Осуществляется разведение МКА по рабочей орбите.

Для VLEO – выведение завершается на Этапе 1. Для LEO - с целью минимизации стоимости разведения целесообразно: на Этапах 2 и 3 использовать не маршевые двигатели (высокий удельный импульс, но малый КПД), а двигатели малой тяги ДМТ (малый удельный импульс, но высокий КПД).

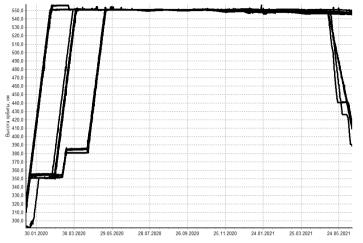



Рис.1 Графики изменения высоты КА из состава группового запуска (57 КА) системы StarLink от 07.01.2020 (i=53 град, время развертывания в рабочих плоскостях: 1,5 мес+1,5 мес + 1.5 мес.)

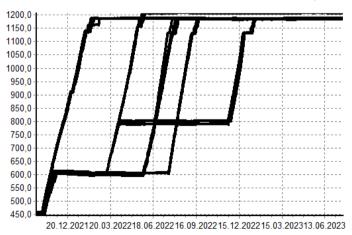



Рис.3 Графики изменения высоты КА из состава группового запуска (36 KA) системы OneWeb от 14.10.2021 (2021-090)



Рис.2 Результат : через 4,5 мес сформированы три плоскости ОГ системы StarLink

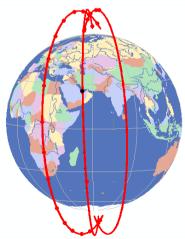



Рис.4 Результат : через 1 год и 2 мес сформированы три плоскости ОГ системы OneWeb



Эшелонирование группировок многоспутниковых систем на LEO

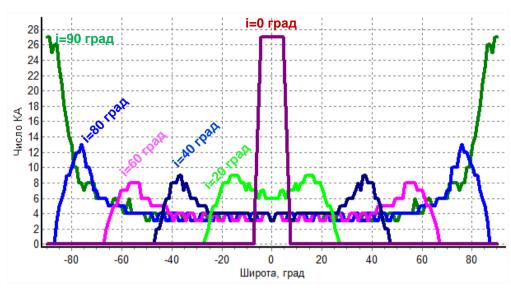
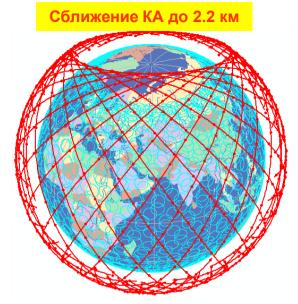



Рис.1. Результаты моделирования: число наблюдаемых КА в функции широты положения АС для табулированных значений наклонения орбит

## а) Сеть RASSVET-1 (эшелон на наклонных орбитах) Параметры орбиты:

- высота 600 км;
- наклонение 60 град;

#### Параметры ОГ:


- 30 пл. по 45 КА (всего 1350 КА);
- угол между плоскостями 12 град;
- -фазовый угол между КА: 8,27 град
- БРТК: диапазон частот Ки, Ка



- высота 800 км:
- наклонение 88 град;

#### Параметры ОГ:

- 10 пл. по 50 КА (всего 500 КА);
- угол между плоскостями 18 град;
- фазовый угол между КА: 7,92 град
- БРТК: диапазон частот Ки, Ка
- межспутниковые линии: есть 33/23 ГГц



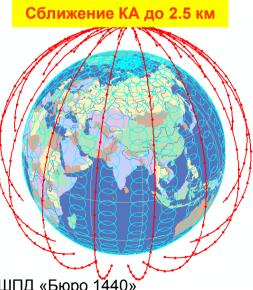



Рис.2. Проект системы ШПД «Бюро 1440» (по данным BR ITU, IFIC 2991)



## Проблема космического мусора, захоронение МКА

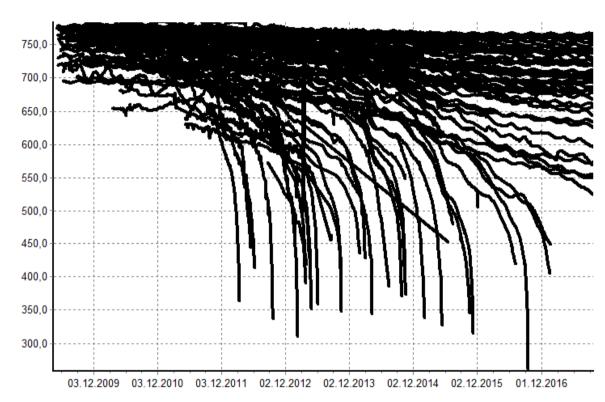



Рис.1. Снижение высоты орбиты фрагментов КА IRIDIUM 33 (всего зафиксировано 657 фрагментов, по состоянию на июль 2023 г на орбите остается более 200 фрагментов)

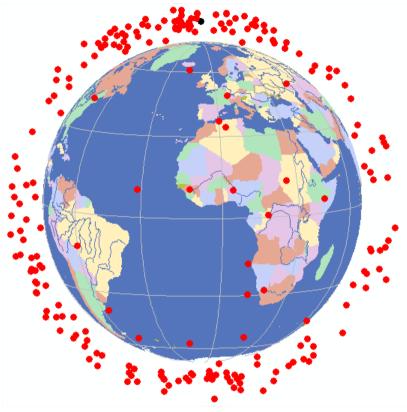



Рис.2. Положение фрагментов IRIDIUM 33 по состоянию на июль 2023 г

#### Предварительные выводы:

- должны быть предусмотрены гарантированные методы захоронения МКА, развернутых на LEO орбите;
- для VLEO захоронение автоматическое



### Совершенствование ГОСТ

#### Обновление и совершенствование документов ГОСТ необходимо:

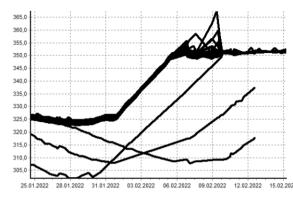
- для выполнения моделирования/прогнозирования спутниковых систем с требуемой точностью на этапах разработки, эксплуатации и последующего захоронения;
- для обеспечения функционирования спутниковых систем на орбите (например, определение координат по картам магнитного поля Земли и т.д.).

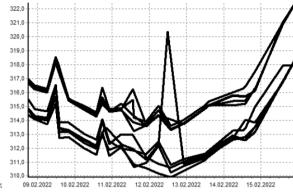
#### Примеры:

#### 1. Гравитационное поле Земли:

- ПАРАМЕТРЫ ЗЕМЛИ 1990 ГОДА (ПЗ-90.11), Специализированный справочник, 2020 г, где описана «Модель аномального гравитационного поля Земли ТМ-60»

#### 2. Атмосфера Земли:


- ГОСТ 4401-81 (1981 г) Атмосфера стандартная.
- ГОСТ Р 25645.166-2004 Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли
- ГОСТ 25645.302-83(1983г) Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности.


#### 3. Магнитное поле Земли

- 25645.127-85(1985г) Магнитосфера Земли

#### 4. Солнечный ветер

- ГОСТ 25645.136-86 (1986г) Ветер солнечный





а) запуск 2022-005 от 19.01.2022 (выведено на эшелон 360 км около 48 КА)

б) запуск 2022-010 от 03.03.2022 (удалось сохранить только около 10 КА)

Рис.1 Деструктивное влияние атмосферы в период солнечной активности

#### Предварительные выводы:

- как в моделях для прогнозирования, так и в составе ПО на борту МКА необходимо использовать российскую нормативнотехническую базу;
- необходимо актуализировать документы ГОСТ, прежде всего в части описания моделей различных физических полей и явлений (атмосфера, гравитация, магнитное поле, солнечные пятна и т.д.)
- если актуалазировать не удается, то в соответствующем ГОСТе нужно указывать: «использовать такую то зарубежную модель» .



#### В состав ПК АСТ входят:

- частный каталог ИСЗ (включая историю баллистических данных), сформированный на основе данных каталога NORAD;
- пользовательская база данных (БД) ИСЗ;
- пользовательская БД РЭС наземного базирования.

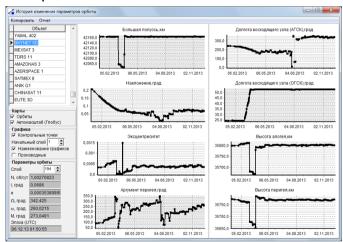



Рис.1. История баллистических данных

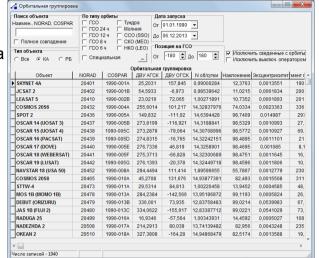



Рис.2. Текущие параметры орбит ИСЗ в околоземном космическом пространстве

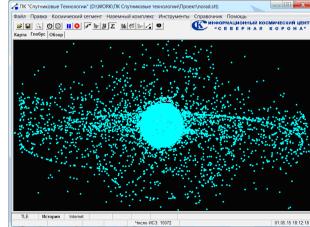



Рис.3. Космический мусор + действующие спутники (>50 тыс. объектов)

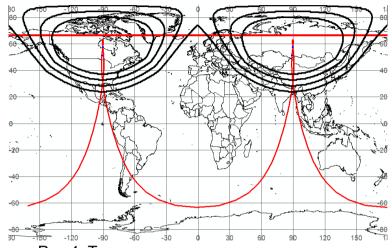



Рис.4. Трасса и гарантированные зоны радиовидимости проекта системы «Экспресс-РВ»

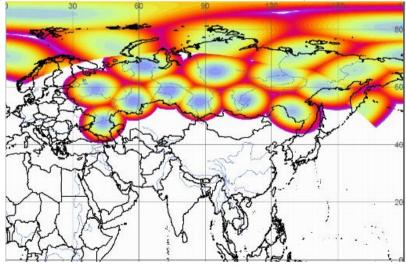



Рис.5. Парциальные зоны обслуживания лучей проекта системы «Экспресс-PB»



Анализ ЭМС «НГСО-НГСО» и «НГСО – GEO»

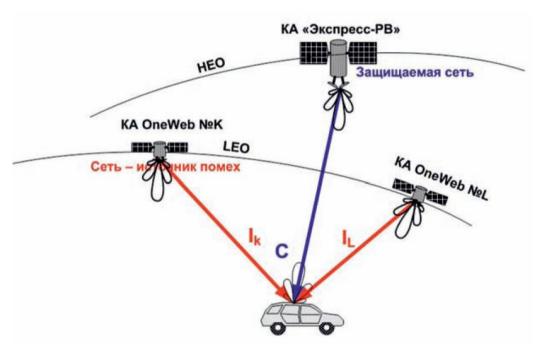
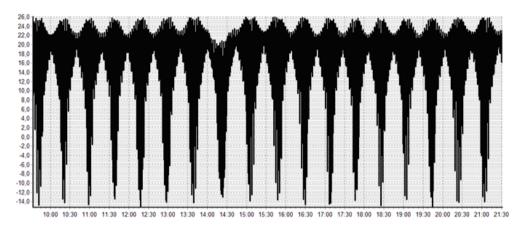
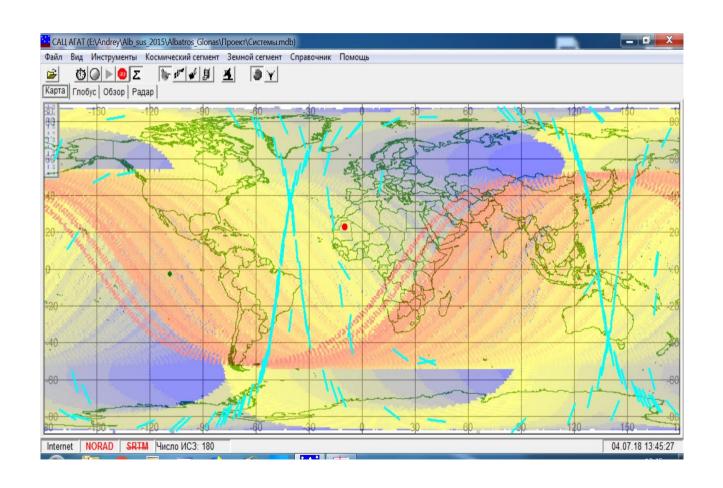
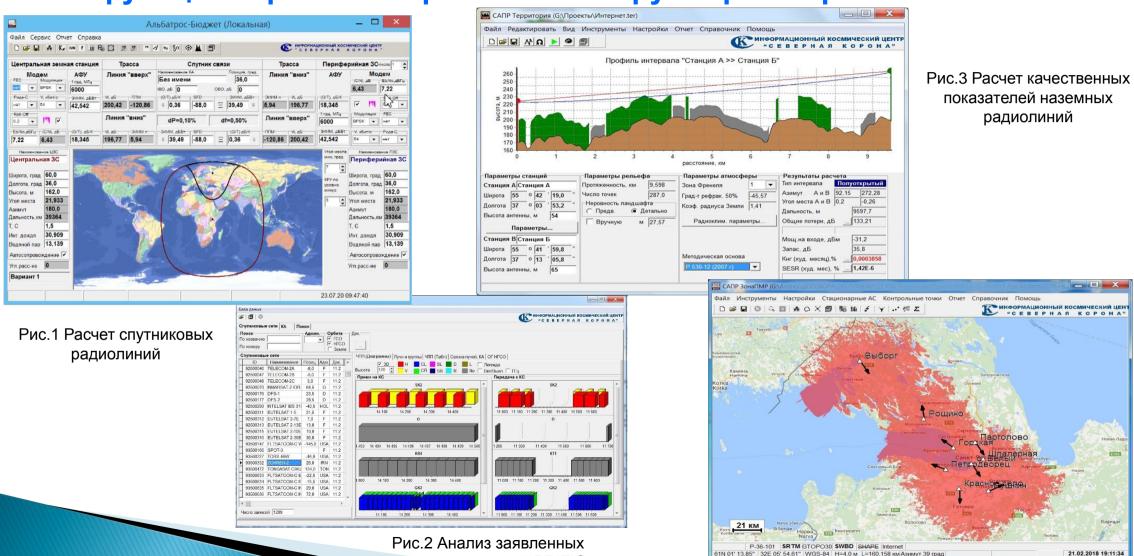




Рис.1. Постановка задачи анализа ЭМС между системами «Экспресс-PB» и OneWeb – анализ помех по входу абонентской станции системы «Экспресс-PB»






Б) на интервале 1 ч


Рис.2 Отношение С/I (дБ) на входе приемника абонентской станции (с антенной 40 см) системы «Экспресс-РВ» от спутников системы OneWeb при работе в сопряженной полосе частот



Пример: оценка минимального, максимального и среднего временных интервалов прохода КА разнородной группировки ДЗЗ территории Земли с учетом углов захвата целевой аппаратуры.
Цвет — значение интервала времени







спутниковых сетей BRIFIC



## Спасибо за внимание!



199034, Россия, Санкт-Петербург,

17-я линия В.О., д.4-6

тел/факс +7 (812) 320-65-04

+7 (812) 922-36-21

e-mail: org@spacecenter.ru

сайт: www.spacecenter.ru